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Interval graphs
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Interval graph:
There are a set I of intervals on the real line and φ : V (G) → I
such that uv ∈ E(G) if and only if φ(u) intersects φ(v).

If all the intervals have the same length, then it is a unit interval graph.
If no interval is properly contained in another, then it is a proper interval graph.
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Chordal graphs

A graph is chordal if it contains no holes.

interval ⊂ chordal
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Holes
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Circular-arc graph:
There are a set A of arc on a circle
and φ : V (G)→ A such that
uv ∈ E(G) iff φ(u) intersects φ(v).
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interval ⊂ circular-arc

How about chordal circular-arc graphs?

Are they always interval graphs?
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The connection
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Pathologic intersecting patterns

Circular arcs admit some “pathologic” intersecting patterns not possible in intervals.

a

b

Pattern 1
two arcs intersect at both ends

c

a b
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Pattern 2
three arcs pairwise intersect

w/o a common point

A circular-arc model is normal (resp., Helly) if it’s free of pattern 1 (resp., 2).
A circular-arc graph is normal (resp., Helly) if it has a normal (resp., Helly) model.

A graph is a normal Helly circular-arc graph if it has a model that is both normal and Helly.
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Pathologic intersecting patterns
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normal circular-arc ∩
Helly circular-arc

6= normal Helly circular-arc
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Normal Helly circular-arc graphs

[McKee 2003]
A circular-arc model is normal and Helly iff no ≤ 3 arcs cover the whole circle.

(In other words, any minimal set of arcs covering the circle represents a hole).

Lemma. Normal Helly circular-arc ∩ chordal = interval.

Proof.
Interval models are normal and Helly: interval ⊂ normal Helly circular-arc.

In a normal Helly model A of a chordal graph G, there must be some point uncovered
by any arc of A. Thus, A is an interval model.
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Circular-arc

Normal circular-arc Helly circular-arc

Proper circular-arc Normal Helly circular-arc Chordal

Unit circular-arc Proper Helly circular-arc

Interval

Unit Helly circular-arc

Unit interval = Proper interval

holes

[Lin et al. 2013]; [C 2017]
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Normal Helly circular-arc Chordal

Proper Helly circular-arc Interval

Unit interval = Proper interval
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1 / 1

Unit interval graphs
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Unit interval graphs

v1
v2

v3
v4

v5

v6

v7v8

v1

v2

v3 v4

v5

v6

v7

v8

v1

v2

v3

v4

v5

v6

v7

v1
v2

v3
v4

v5 v6 v7

The left is a unit interval graph; the right is not.
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Forbidden induced subgraphs

[Wegner 1967]

claw net tent C4 C5

· · ·

unit interval ⊂ interval ⊂ chordal
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Unit interval vertex deletion

Input: A graph G and an integer k.
Task: A set V− of ≤ k vertices such that G− V− is a unit interval graph.

Unit interval vertex deletion

NP-complete

[Lewis & Yannakakis 1978]

FPT

[Marx 2006]
O((14k + 14)k+1 · kn6)
[van Bevern et al. 2010]

O(6k · n6)
[Villanger 2013]

O(6k · (n+m))

[C 2017]
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Main ideas

Standard technique

A small subgraph F can be found in n|F | time and dealt with an |F |-way branching.

Make it {claw, net, tent}-free, then solve it using chordal vertex deletion

[van Bevern et al. 2010]
Make it {claw, net, tent, C4, C5, C6}-free, and then use iterative compression.

[Villanger 2013]
A connected {claw, net, tent, C4, C5, C6}-free graphs are proper circular-arc graphs, on
which the problem can be solved in linear time.
(by manually building a proper circular-arc model.)
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Proper Helly circular-arc graphs

A graph having a circular-arc model that is both proper and Helly.

a

b

A Helly model
c

a b

a

b

c

A proper model

39 / 1



Proper Helly circular-arc graphs

A graph having a circular-arc model that is both proper and Helly.

a

b

A Helly model
c

a b

a

b

c

A proper model

40 / 1



Why proper Helly?

Theorem (Tucker 1974; Lin et al. 2013)

A graph is a proper Helly circular-arc graph if and only if it contains no claw, net, tent,
W4, W5, C6, or C∗` for ` ≥ 4 (a hole C` and another isolated vertex).

A trivial corollary:
If a proper Helly circular-arc graph is chordal, then it is a unit interval graph.

A nontrivial corollary:
A connected {claw, net, tent, C4, C5}-free graph is a proper Helly circular-arc graph.
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Achilles’ heel

Once all claws, nets, tents, C4’s, and C5’s destroyed,
it suffices to find the thinnest point from the model.

α
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Break time

You may safely skip the following three slides if you are tired.
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How about unit Helly circular-arc graphs?

Normal Helly circular-arc Chordal

Proper Helly circular-arc Interval

Unit Helly circular-arc

Unit interval = Proper interval

holes

claw

claw

holes

= proper Helly circular-arc ∩ chordal
= unit Helly circular-arc ∩ chordal

This is actually the CI(`, 1) graph defined
by [Tucker 1974]; see also [Lin et al. 2013].
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Edge deletion

proper Helly circular-arc → unit interval by deleting edges:
Achilles’ heel with respect to edges.

The thinnest point for vertices is α
The thinnest point for edges is β

β

α
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A slightly stronger statement

[van Bevern et al. 2010]
Unit interval vertex deletion remains NP-hard on {claw, net, tent}-free graphs.
[Villanger 2013]
Unit interval vertex deletion is in P for {claw, net, tent, C4, C5, C6}-free graph.

[Villanger 2013]
How about {claw, net, tent, C4}-free graphs?

[C 2017]
If a connected {claw, net, tent, C4}-free graph is not
a proper Helly circular-arc graph, then it is a fat W5.
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7

7

21 4
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Normal Helly circular-arc Chordal

Proper Helly circular-arc Interval

Unit interval = Proper interval

holes

claw

claw

holes

1 / 1

Normal Helly circular-arc graphs
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The problems

Characterization (by forbidden induced subgraphs):
Identify the set H of minimal subgraphs such that G is a normal Helly circular-arc
graphs if and only if it contains no subgraph in H.

Recognition:
Efficiently decide whether a given graph is a normal Helly circular-arc graph or not.

Detection:
Either a model that is both normal and Helly (positive certificate),
or a forbidden induced subgraph (negative certificate).

56 / 1



The problems

Characterization (by forbidden induced subgraphs):
Identify the set H of minimal subgraphs such that G is a normal Helly circular-arc
graphs if and only if it contains no subgraph in H.

Recognition:
Efficiently decide whether a given graph is a normal Helly circular-arc graph or not.

Detection:
Either a model that is both normal and Helly (positive certificate),
or a forbidden induced subgraph (negative certificate).

57 / 1



The problems

Characterization (by forbidden induced subgraphs):
Identify the set H of minimal subgraphs such that G is a normal Helly circular-arc
graphs if and only if it contains no subgraph in H.

Recognition:
Efficiently decide whether a given graph is a normal Helly circular-arc graph or not.

Detection:
Either a model that is both normal and Helly (positive certificate),
or a forbidden induced subgraph (negative certificate).

58 / 1



Characterization of interval graphs

Asteroidal triple (AT):
Three vertices of which each pair is connected
by a path avoiding neighbors of the third one.

Theorem (Lekkerkerker and Boland, 1962)

A graph is an interval graph if and only if it contains no holes or ATs.

any hole of length ≥ 6 contains ATs.
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Chordal asteroidal witnesses (CAW)

Asteroidal witness: a minimal graph that contains an AT.

All chordal asteroidal witnesses are minimal forbidden induced subgraphs of NHCAG.
(Recall that normal Helly circular-arc ∩ chordal = interval.)

We are henceforth focused on the non-chordal case, hence holes.
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Intuition

In a normal Helly circular-arc model,

Any minimal set of arcs covering the circle
induces a hole.

For any vertex v in a hole,
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Intuition

v

In a normal Helly circular-arc model,

Any minimal set of arcs covering the circle
induces a hole.

For any vertex v in a hole, G−N [v] is an
interval subgraph.
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The auxiliary graph f(G)

Construction of f(G):?

1 find a vertex v with the largest degree;
(G−N [v] is an interval graph.)

2 append a copy of N [v] to “each end” of G−N [v].
3 add a new vertex w to keep the left end of the left copy of N [v].

?: Upon a failure during this construction, a forbidden induced subgraph can be detected.

Theorem (C 2016; C Grippo Safe 2017)

G is a normal Helly circular-arc graph if and only if f(G) is an interval graph.
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Circular-arc model for G ⇒ Interval model for f(G)

every point in the model
has a value in (0, 1].
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Other forbidden induced subgraphs (with holes)

K2,3 twin-C5 domino C6

FIS-1 F C∗ wheel
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The certifying recognition algorithm

1. if G is chordal then
return an interval model of G or a caw;

2. build the auxiliary graph f(G);
3. if f(G) is an interval graph then

build a normal and Helly circular-arc model A for G;
return A;

4. else
find a minimal forbidden induced subgraph F of G;
return F .
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Related subclasses of circular-arc graphs

Characterization Certifying recognition
circular arc (ca) Unknown Unknown†

normal ca Unknown‡ Unknown
proper ca Tucker 1974 Kaplan&Nussbaum 2009

unit ca Tucker 1974 Kaplan&Nussbaum 2009
unit Helly ca Lin et al. 2013 Lin et al. 2013

proper Helly ca Lin et al. 2013 Lin et al. 2013

normal Helly ca C Grippo & Safe 2017

†: linear recognition is known.
‡: circular arc graphs that are not normal are known.
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Normal Helly circular-arc Chordal

Proper Helly circular-arc Interval

Unit interval = Proper interval

holes

claw

claw

holes

1 / 1

Interval graphs
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Characterization of interval graphs

Hole:
an induced cycle of length ≥ 4.

Asteroidal triple (AT):
Three vertices of which each pair is connected
by a path avoiding neighbors of the third one.

normal Helly circular-arc ∩ chordal = interval.
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Reduction: small forbidden subgraphs

Recall that

Standard technique

A small subgraph F can be found in n|F | time and dealt with an |F |-way branching.

Kill all forbidden subgraphs of ≤ 10 vertices: The resulting graph is called reduced.
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Shallow terminals

We are left with long holes (at least 11 vertices) and

s

l

b0 b1 b2 bi bd−1 bd

r

bd+1

c

s

l

b0 b1 b2 bi bd−1 bd

r

bd+1

c1 c2

Shallow terminal:
of the unique asteroidal triple, one vertex s has a shorter distance to the other two (l, r).
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Main theorem

In a reduced graph,
shallow terminals form modules (set of vertices with the same neighborhood); and
neighbors of each of the modules induces a clique.

Or (in the parlance of modular decomposition):
Each shallow terminal in the quotient graph of a reduced graph is simplicial.
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Maximal cliques

Shallow terminals are not in any holes; the rest form a normal Helly circular-arc graph.
n maximal cliques
chordal graph: tree interval graph: path normal Helly circular-arc graph: cycle reduced
graph: olive ring.
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Linear-time
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Almost interval graphs

Theorem (Yannakakis 79, 81; Goldberg et al. 95)

All modification problems to interval graphs are NP-complete.

interval+ ke, interval− ke, and interval+ kv can be recognized in time nO(k)

(polynomial for fixed k) [trivial].
interval− ke can be recognized in time k2k · n5: [Heggernes et al. STOC’07];
and interval+ kv can be recognized in time k9 · n9 [Cao & Marx SODA’14].

f(k) · nO(1): Fixed-parameter tractable (FPT)

Can interval+ ke be recognized in FPT time as well?
Can any of them be recognized in linear time?
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Prime graphs

Definition
M ⊆ V (G) is a module of G if they have the same neighborhood outside M :
u, v ∈M and x 6∈M , u ∼ x iff v ∼ x.
A graph G is prime if a module of G is V (G) or consists of a single vertex.

Observation details omitted
It suffices to solve the problem on prime graphs.
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Conclusion

We have used the connection as a black box to devise a 10k · nO(1)-time algorithm
for the interval vertex deletion problem.

Using it as a white box, the runtime can be improved to O(10k · (n+m)).

With more careful use of modules, we can solve the interval completion and
interval edge deletion problem as well.
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Normal Helly circular-arc Chordal

Proper Helly circular-arc Interval

Unit interval = Proper interval

holes

claw

claw

holes

1 / 1

Epilogue

94 / 1



Edge deletions

Conjecture
a minimal solution of edge deletion is “local” to some point in an arc model for G.

u1

u2u3

u4

u5 u6

v1

v2v3

v4

v5 v6
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To break long holes

Definition
−→
E (α) = {vu : α ∈ Av, α 6∈ Au, v → u},

where v → u means that arc Av intersects arc Au from the left.

α

0 `

A trivial corollary

For any point α, the subgraph G−
−→
E (α) is a unit interval graph.
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To break long holes

Definition
−→
E (α) = {vu : α ∈ Av, α 6∈ Au, v → u},

where v → u means that arc Av intersects arc Au from the left.

α

0 `

A nontrivial corollary

Any minimum solution is
−→
E (α) for some point α.
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To find Achilles’ heel

Both deletion problems reduce to find a weakest point.
A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.

it suffices to try 2n different points (n actually).

finding an arbitrary point ρ and calculate
−→
E (ρ).

scan clockwise, until an endpoint met;

if it is a clockwise endpoint, then
−→
E (ρ′) =

−→
E (α).

otherwise, the difference between
−→
E (ρ) and

−→
E (α)

is the set of edges incident to v.

Theorem
both unit interval vertex deletion and unit interval edge deletion can be solved in
O(m) time on proper Helly circular-arc graphs.
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thanks!
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