Interval Graphs and (Normal Helly) Circular-arc Graphs

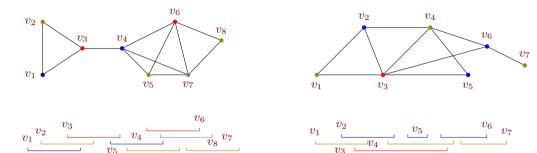
Yixin Cao (操官新)

Department of Computing, Hong Kong Polytechnic University 香港理工大學 電子計算學系

Constrained Recognition Problems (ICALP 2018)

July 9, 2018 Prague, Czech

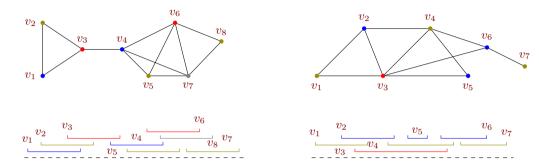
Interval graphs



Interval graph:

There are a set $\mathcal I$ of intervals on the real line and $\phi:V(G)\to\mathcal I$ such that $uv\in E(G)$ if and only if $\phi(u)$ intersects $\phi(v)$.

Interval graphs

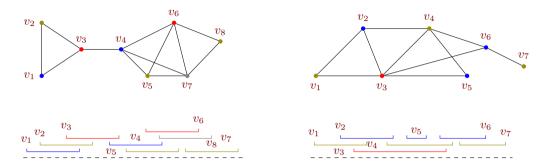


Interval graph:

There are a set \mathcal{I} of intervals on the real line and $\phi:V(G)\to\mathcal{I}$ such that $uv\in E(G)$ if and only if $\phi(u)$ intersects $\phi(v)$.

If all the intervals have the same length, then it is a unit interval graph.

Interval graphs

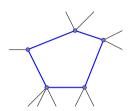


Interval graph:

There are a set \mathcal{I} of intervals on the real line and $\phi:V(G)\to\mathcal{I}$ such that $uv\in E(G)$ if and only if $\phi(u)$ intersects $\phi(v)$.

If all the intervals have the same length, then it is a *unit interval graph*. If no interval is properly contained in another, then it is a *proper interval graph*.

Chordal graphs

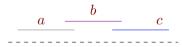


A graph is *chordal* if it contains no holes.

 $INTERVAL \subset CHORDAL$

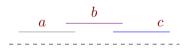
Holes

Holes

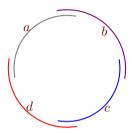


We cannot accommodate d.

Holes



We cannot accommodate d.



Circular-arc graph: There are a set \mathcal{A} of arc on a circle and $\phi:V(G)\to\mathcal{A}$ such that $uv\in E(G)$ iff $\phi(u)$ intersects $\phi(v)$.

INTERVAL C CIRCULAR-ARC

INTERVAL C CIRCULAR-ARC

How about chordal circular-arc graphs?

INTERVAL C CIRCULAR-ARC

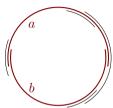
How about chordal circular-arc graphs?

Are they always interval graphs?

The connection

Circular arcs admit some "pathologic" intersecting patterns not possible in intervals.

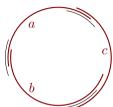
Circular arcs admit some "pathologic" intersecting patterns not possible in intervals.



Pattern 1 two arcs intersect at both ends

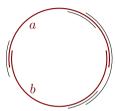
Circular arcs admit some "pathologic" intersecting patterns not possible in intervals.

Pattern 1 two arcs intersect at both ends

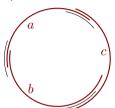


Pattern 2 three arcs pairwise intersect w/o a common point

Circular arcs admit some "pathologic" intersecting patterns not possible in intervals.



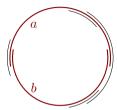
Pattern 1 two arcs intersect at both ends



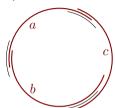
Pattern 2 three arcs pairwise intersect w/o a common point

A circular-arc model is *normal* (resp., *Helly*) if it's free of pattern 1 (resp., 2).

Circular arcs admit some "pathologic" intersecting patterns not possible in intervals.



Pattern 1 two arcs intersect at both ends



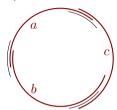
Pattern 2 three arcs pairwise intersect w/o a common point

A circular-arc model is *normal* (resp., *Helly*) if it's free of pattern 1 (resp., 2).

A circular-arc graph is normal (resp., Helly) if it has a normal (resp., Helly) model.

Circular arcs admit some "pathologic" intersecting patterns not possible in intervals.

Pattern 1 two arcs intersect at both ends



Pattern 2 three arcs pairwise intersect w/o a common point

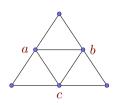
A circular-arc model is normal (resp., Helly) if it's free of pattern 1 (resp., 2).

A circular-arc graph is normal (resp., Helly) if it has a normal (resp., Helly) model.

A graph is a normal Helly circular-arc graph if it has a model that is both normal and Helly.

Circular arcs admit some "pathologic" intersecting patterns not possible in intervals.

Pattern 1 two arcs intersect at both ends



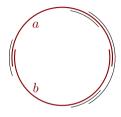
Pattern 2 three arcs pairwise intersect w/o a common point

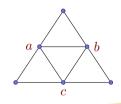
A circular-arc model is *normal* (resp., *Helly*) if it's free of pattern 1 (resp., 2).

A circular-arc graph is normal (resp., Helly) if it has a normal (resp., Helly) model.

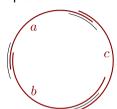
A graph is a normal Helly circular-arc graph if it has a model that is both normal and Helly.

Circular arcs admit some "pathologic" intersecting patterns not possible in intervals.





normal circular-arc ∩ Helly circular-arc
≠ normal Helly circular-arc



Pattern 2 e arcs pairwise intersect v/o a common point

A circular-arc model is normal (resp., Helly) if it's free of pattern 1 (resp., 2).

A circular-arc graph is normal (resp., Helly) if it has a normal (resp., Helly) model.

A graph is a normal Helly circular-arc graph if it has a model that is both normal and Helly.

Normal Helly circular-arc graphs

[McKee 2003]

A circular-arc model is normal and Helly iff no ≤ 3 arcs cover the whole circle.

(In other words, any minimal set of arcs covering the circle represents a hole).

Lemma. NORMAL HELLY CIRCULAR-ARC ∩ CHORDAL = INTERVAL.

Proof

Interval models are normal and Helly: INTERVAL \subset NORMAL HELLY CIRCULAR-ARC.

In a normal Helly model A of a chordal graph G, there must be some point uncovered by any arc of A. Thus, A is an interval model.

Normal Helly circular-arc graphs

[McKee 2003]

A circular-arc model is normal and Helly iff no ≤ 3 arcs cover the whole circle.

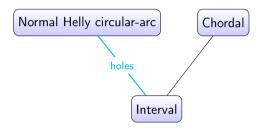
(In other words, any minimal set of arcs covering the circle represents a hole).

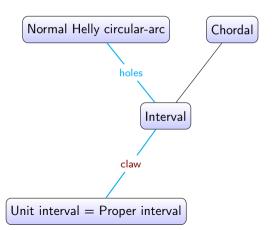
Lemma. NORMAL HELLY CIRCULAR-ARC ∩ CHORDAL = INTERVAL.

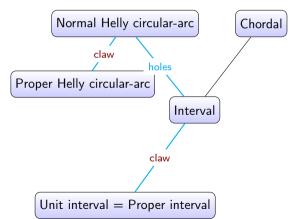
Proof.

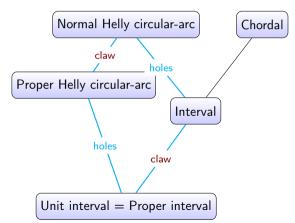
Interval models are normal and Helly: INTERVAL \subset NORMAL HELLY CIRCULAR-ARC.

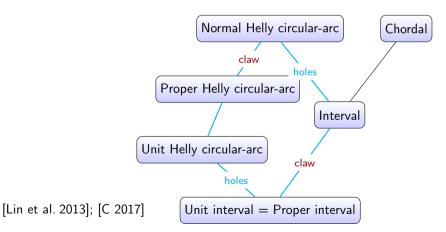
In a normal Helly model \mathcal{A} of a chordal graph G, there must be some point uncovered by any arc of \mathcal{A} . Thus, \mathcal{A} is an interval model.



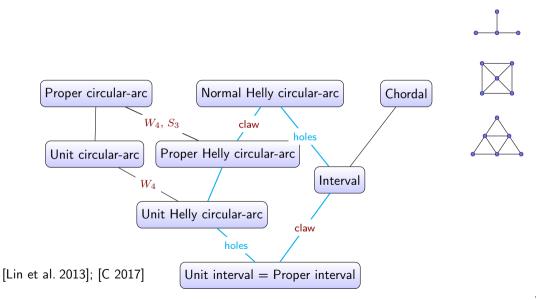


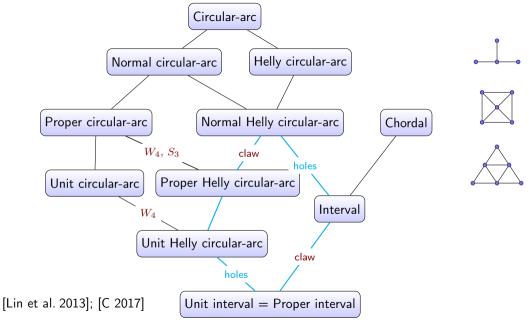


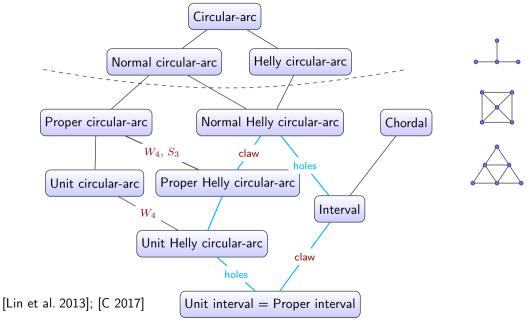


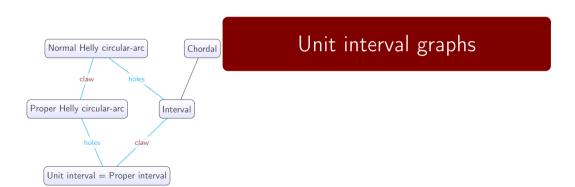


27 / 1

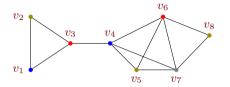


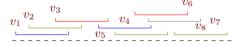




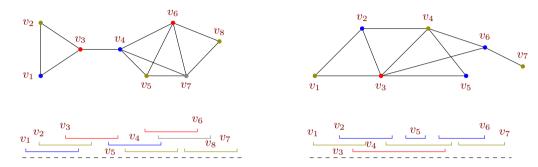


Unit interval graphs





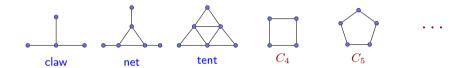
Unit interval graphs



The left is a unit interval graph; the right is not.

Forbidden induced subgraphs

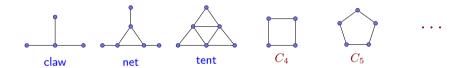
[Wegner 1967]



UNIT INTERVAL C INTERVAL C CHORDAL

Forbidden induced subgraphs

[Wegner 1967]



UNIT INTERVAL \subset INTERVAL \subset CHORDAL

Unit interval vertex deletion

Unit interval vertex deletion

Input: A graph G and an integer k.

Task: A set V_{-} of $\leq k$ vertices such that $G - V_{-}$ is a unit interval graph.

NP-complete

[Lewis & Yannakakis 1978]

Unit interval vertex deletion

Unit interval vertex deletion

Input: A graph G and an integer k.

Task: A set V_{-} of $\leq k$ vertices such that $G - V_{-}$ is a unit interval graph.

NP-complete

[Lewis & Yannakakis 1978]

FPT $O((14k+14)^{k+1} \cdot kn^6)$ $O(6^k \cdot n^6)$ $O(6^k \cdot (n+m))$ [Marx 2006] [Villanger 2013] [C 2017]

Main ideas

Standard technique

A small subgraph F can be found in $n^{|F|}$ time and dealt with an |F|-way branching.

Make it {claw, net, tent}-free, then solve it using chordal vertex deletion

[van Bevern et al. 2010]

Make it $\{claw, net, tent, C_4, C_5, C_6\}$ -free, and then use iterative compression.

[Villanger 2013]

A connected $\{\text{claw}, \text{net}, \text{tent}, C_4, C_5, C_6\}$ -free graphs are proper circular-arc graphs, on which the problem can be solved in linear time.

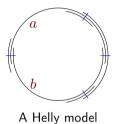
(by manually building a proper circular-arc model.)

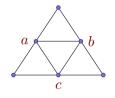
Proper Helly circular-arc graphs

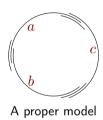
A graph having a circular-arc model that is both proper and Helly.

Proper Helly circular-arc graphs

A graph having a circular-arc model that is both proper and Helly.







Why proper Helly?

Theorem (Tucker 1974; Lin et al. 2013)

A graph is a proper Helly circular-arc graph if and only if it contains no claw, net, tent, W_4 , W_5 , $\overline{C_6}$, or C_ℓ^* for $\ell \geq 4$ (a hole C_ℓ and another isolated vertex).

A trivial corollary:

If a proper Helly circular-arc graph is chordal, then it is a unit interval graph.

A nontrivial corollary:

A connected {claw, net, tent, C_4 , C_5 }-free graph is a proper Helly circular-arc graph.

Why proper Helly?

Theorem (Tucker 1974; Lin et al. 2013)

A graph is a proper Helly circular-arc graph if and only if it contains no claw, net, tent, W_4 , W_5 , $\overline{C_6}$, or C_ℓ^* for $\ell \geq 4$ (a hole C_ℓ and another isolated vertex).

A trivial corollary: If a proper Helly circular-arc graph is chordal, then it is a unit interval graph.

A nontrivial corollary:

A connected $\{claw, net, tent, C_4, C_5\}$ -free graph is a proper Helly circular-arc graph.

Why proper Helly?

Theorem (Tucker 1974; Lin et al. 2013)

A graph is a proper Helly circular-arc graph if and only if it contains no claw, net, tent, W_4 , W_5 , $\overline{C_6}$, or C_ℓ^* for $\ell \geq 4$ (a hole C_ℓ and another isolated vertex).

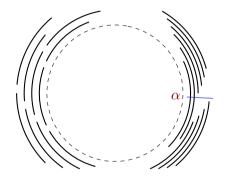
A trivial corollary:

If a proper Helly circular-arc graph is chordal, then it is a unit interval graph.

A nontrivial corollary:

A connected $\{claw, net, tent, C_4, C_5\}$ -free graph is a proper Helly circular-arc graph.

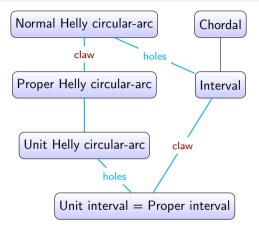
Achilles' heel

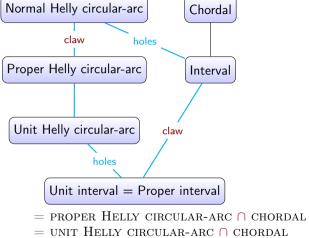


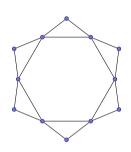
Once all claws, nets, tents, C_4 's, and C_5 's destroyed, it suffices to find the thinnest point from the model.

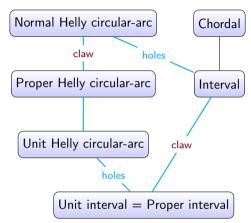
Break time

You may safely skip the following three slides if you are tired.

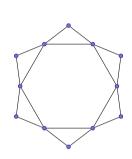




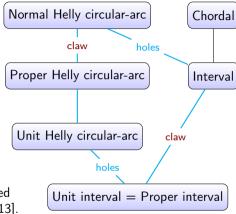




- = PROPER HELLY CIRCULAR-ARC ∩ CHORDAL
- = UNIT HELLY CIRCULAR-ARC ∩ CHORDAL



This is actually the $CI(\ell, 1)$ graph defined by [Tucker 1974]; see also [Lin et al. 2013].

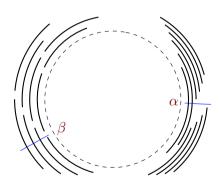


- = PROPER HELLY CIRCULAR-ARC ∩ CHORDAL
- = Unit Helly Circular-ARC \cap Chordal

Edge deletion

proper Helly circular-arc \rightarrow unit interval by deleting edges: Achilles' heel with respect to edges.

The thinnest point for vertices is α The thinnest point for edges is β



[van Bevern et al. 2010] Unit interval vertex deletion remains NP-hard on {claw, net, tent}-free graphs. [Villanger 2013] Unit interval vertex deletion is in P for {claw, net, tent, C_4 , C_5 , C_6 }-free graph.

```
[van Bevern et al. 2010] Unit interval vertex deletion remains NP-hard on {claw, net, tent}-free graphs. [Villanger 2013] Unit interval vertex deletion is in P for {claw, net, tent, C_4, C_5, C_6}-free graph.
```

[Villanger 2013] How about {claw, net, tent, C_4 }-free graphs?

```
[van Bevern et al. 2010] Unit interval vertex deletion remains NP-hard on {claw, net, tent}-free graphs. [Villanger 2013] Unit interval vertex deletion is in P for {claw, net, tent, C_4, C_5, C_6}-free graph.
```

```
[Villanger 2013] How about {claw, net, tent, C_4}-free graphs?
```

```
[C 2017] If a connected {claw, net, tent, C_4}-free graph is not a proper Helly circular-arc graph, then it is a fat W_5.
```

[van Bevern et al. 2010]

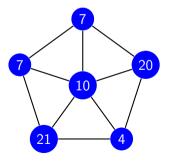
Unit interval vertex deletion remains NP-hard on {claw, net, tent}-free graphs.

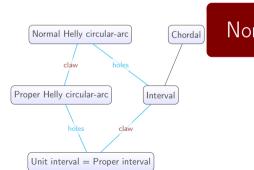
[Villanger 2013]

Unit interval vertex deletion is in P for $\{claw, net, tent, C_4, C_5, C_6\}$ -free graph.

[Villanger 2013] How about {claw, net, tent, C_4 }-free graphs?

[C 2017] If a connected {claw, net, tent, C_4 }-free graph is not a proper Helly circular-arc graph, then it is a fat W_5 .





Normal Helly circular-arc graphs

The problems

Characterization (by forbidden induced subgraphs): Identify the set \mathcal{H} of minimal subgraphs such that G is a normal Helly circular-arc graphs if and only if it contains no subgraph in \mathcal{H} .

Recognition

Efficiently decide whether a given graph is a normal Helly circular-arc graph or not.

Detection

Either a model that is both normal and Helly (positive certificate), or a forbidden induced subgraph (negative certificate).

The problems

Characterization (by forbidden induced subgraphs):

Identify the set $\mathcal H$ of minimal subgraphs such that G is a normal Helly circular-arc graphs if and only if it contains no subgraph in $\mathcal H$.

Recognition:

Efficiently decide whether a given graph is a normal Helly circular-arc graph or not.

Detection

Either a model that is both normal and Helly (positive certificate), or a forbidden induced subgraph (negative certificate).

The problems

Characterization (by forbidden induced subgraphs):

Identify the set $\mathcal H$ of minimal subgraphs such that G is a normal Helly circular-arc graphs if and only if it contains no subgraph in $\mathcal H$.

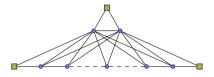
Recognition:

Efficiently decide whether a given graph is a normal Helly circular-arc graph or not.

Detection:

Either a model that is both normal and Helly (positive certificate), or a forbidden induced subgraph (negative certificate).

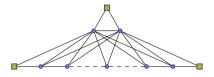
Characterization of interval graphs



Asteroidal triple (AT):

Three vertices of which each pair is connected by a path avoiding neighbors of the third one.

Characterization of interval graphs



Asteroidal triple (AT):

Three vertices of which each pair is connected by a path avoiding neighbors of the third one.

Theorem (Lekkerkerker and Boland, 1962)

A graph is an interval graph if and only if it contains no holes or ATs.

any hole of length ≥ 6 contains ATs.

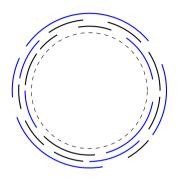
Chordal asteroidal witnesses (CAW)

Asteroidal witness: a minimal graph that contains an AT.

All chordal asteroidal witnesses are minimal forbidden induced subgraphs of NHCAG. (Recall that NORMAL HELLY CIRCULAR-ARC \cap CHORDAL = INTERVAL.)

We are henceforth focused on the non-chordal case, hence holes.

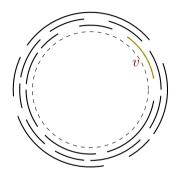
Intuition



In a normal Helly circular-arc model,

- Any minimal set of arcs covering the circle induces a hole.
- ullet For any vertex v in a hole,

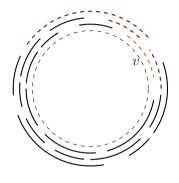
Intuition



In a normal Helly circular-arc model,

- Any minimal set of arcs covering the circle induces a hole.
- ullet For any vertex v in a hole,

Intuition



In a normal Helly circular-arc model,

- Any minimal set of arcs covering the circle induces a hole.
- For any vertex v in a hole, G-N[v] is an interval subgraph.

Construction of $\mho(G)$:*

- lacktriangledown find a vertex v with the largest degree;
 - (G N[v] is an interval graph.)
- ② append a copy of N[v] to "each end" of G N[v].
- ullet add a new vertex w to keep the left end of the left copy of N[v].

Construction of $\mho(G)$:*

- find a vertex v with the largest degree; (G N[v]) is an interval graph.)
- ② append a copy of N[v] to "each end" of G N[v].
- ullet add a new vertex w to keep the left end of the left copy of N[v].

Construction of $\mho(G)$:*

- find a vertex v with the largest degree; (G N[v]) is an interval graph.)
- ② append a copy of N[v] to "each end" of G N[v].
- @ add a new vertex w to keep the left end of the left copy of N[v].

Construction of $\mho(G)$:*

- find a vertex v with the largest degree; (G N[v]) is an interval graph.)
- ② append a copy of N[v] to "each end" of G N[v].
- lacktriangledown add a new vertex w to keep the left end of the left copy of N[v].

Construction of $\mho(G)$:*

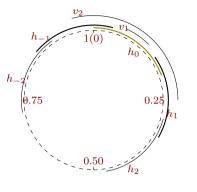
- find a vertex v with the largest degree; (G N[v]) is an interval graph.)
- ② append a copy of N[v] to "each end" of G N[v].
- \odot add a new vertex w to keep the left end of the left copy of N[v].

*: Upon a failure during this construction, a forbidden induced subgraph can be detected.

Theorem (C 2016; C Grippo Safe 2017)

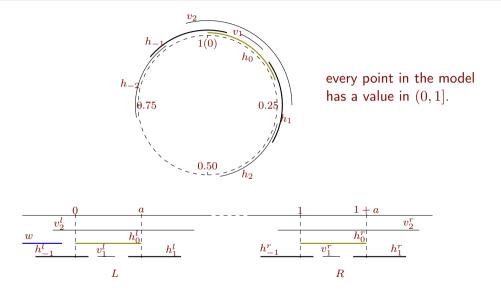
G is a normal Helly circular-arc graph if and only if $\mho(G)$ is an interval graph.

Circular-arc model for $G \Rightarrow$ Interval model for $\mho(G)$

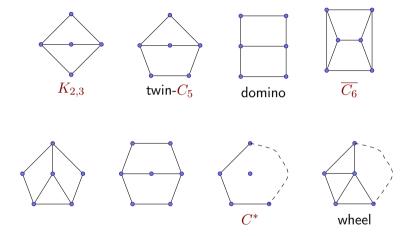


every point in the model has a value in (0,1].

Circular-arc model for $G \Rightarrow$ Interval model for $\mho(G)$



Other forbidden induced subgraphs (with holes)



The certifying recognition algorithm

- 1. if G is chordal then return an interval model of G or a CAW;
- 2. build the auxiliary graph $\mho(G)$;
- 3. if $\mho(G)$ is an interval graph then build a normal and Helly circular-arc model \mathcal{A} for G; return \mathcal{A} ;
- 4. else

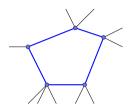
find a minimal forbidden induced subgraph F of G; return F.

Related subclasses of circular-arc graphs

	Characterization	Certifying recognition
CIRCULAR ARC (CA)	Unknown	Unknown [†]
NORMAL CA	Unknown [‡]	Unknown
PROPER CA	Tucker 1974	Kaplan&Nussbaum 2009
UNIT CA	Tucker 1974	Kaplan&Nussbaum 2009
UNIT HELLY CA	Lin et al. 2013	Lin et al. 2013
PROPER HELLY CA	Lin et al. 2013	Lin et al. 2013
NORMAL HELLY CA	C Grippo & Safe 2017	

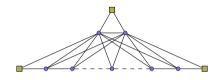
- †: linear recognition is known.
- ‡: circular arc graphs that are not normal are known.

Characterization of interval graphs



Hole:

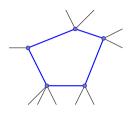
an induced cycle of length ≥ 4 .



Asteroidal triple (AT):

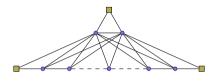
Three vertices of which each pair is connected by a path avoiding neighbors of the third one.

Characterization of interval graphs



Hole:

an induced cycle of length ≥ 4 .



Asteroidal triple (AT):

Three vertices of which each pair is connected by a path avoiding neighbors of the third one.

NORMAL HELLY CIRCULAR-ARC \cap CHORDAL = INTERVAL.

Reduction: small forbidden subgraphs

Recall that

Standard technique

A small subgraph F can be found in $n^{|F|}$ time and dealt with an |F|-way branching.

Kill all forbidden subgraphs of ≤ 10 vertices: The resulting graph is called *reduced*.

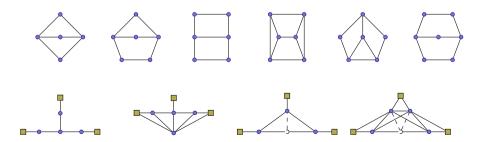
Reduction: small forbidden subgraphs

Recall that

Standard technique

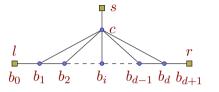
A small subgraph F can be found in $n^{|F|}$ time and dealt with an |F|-way branching.

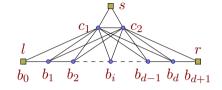
Kill all forbidden subgraphs of ≤ 10 vertices: The resulting graph is called *reduced*.



Shallow terminals

We are left with long holes (at least 11 vertices) and





Shallow terminal: of the unique asteroidal triple, one vertex s has a shorter distance to the other two (l, r).

Main theorem

In a reduced graph,

- shallow terminals form modules (set of vertices with the same neighborhood); and
- neighbors of each of the modules induces a clique.

Or (in the parlance of modular decomposition): Each shallow terminal in the quotient graph of a reduced graph is simplicial

Main theorem

In a reduced graph,

- shallow terminals form modules (set of vertices with the same neighborhood); and
- neighbors of each of the modules induces a clique.

Or (in the parlance of modular decomposition):

Each shallow terminal in the quotient graph of a reduced graph is simplicial.

Maximal cliques

Shallow terminals are not in any holes; the rest form a normal Helly circular-arc graph. n maximal cliques chordal graph: tree interval graph: path normal Helly circular-arc graph: cycle reduced graph: olive ring.

Linear-time

Almost interval graphs

Theorem (Yannakakis 79, 81; Goldberg et al. 95)

All modification problems to interval graphs are NP-complete.

- interval + ke, interval ke, and interval + kv can be recognized in time $n^{O(k)}$ (polynomial for fixed k) [trivial].
- interval ke can be recognized in time $k^{2k} \cdot n^5$: [Heggernes et al. STOC'07]; and interval + kv can be recognized in time $k^9 \cdot n^9$ [Cao & Marx SODA'14].

$$f(k) \cdot n^{O(1)}$$
: Fixed-parameter tractable (FPT)

- ullet Can interval + ke be recognized in FPT time as well?
- Can any of them be recognized in linear time?

Almost interval graphs

Theorem (Yannakakis 79, 81; Goldberg et al. 95)

All modification problems to interval graphs are NP-complete.

- interval + ke, interval ke, and interval + kv can be recognized in time $n^{O(k)}$ (polynomial for fixed k) [trivial].
- interval ke can be recognized in time $k^{2k} \cdot n^5$: [Heggernes et al. STOC'07]; and interval + kv can be recognized in time $k^9 \cdot n^9$ [Cao & Marx SODA'14].

```
f(k) \cdot n^{O(1)}: Fixed-parameter tractable (FPT)
```

- ullet Can interval +ke be recognized in FPT time as well?
- Can any of them be recognized in linear time?

Prime graphs

Definition

- $M \subseteq V(G)$ is a module of G if they have the same neighborhood outside M: $u, v \in M$ and $x \notin M$, $u \sim x$ iff $v \sim x$.
- A graph G is prime if a module of G is V(G) or consists of a single vertex.

Observation details omitted

It suffices to solve the problem on prime graphs.

Prime graphs

Definition

- $M \subseteq V(G)$ is a module of G if they have the same neighborhood outside M: $u, v \in M$ and $x \notin M$, $u \sim x$ iff $v \sim x$.
- A graph G is prime if a module of G is V(G) or consists of a single vertex.

Observation details omitted

It suffices to solve the problem on prime graphs.

- ullet We have used the connection as a black box to devise a $10^k \cdot n^{O(1)}$ -time algorithm for the interval vertex deletion problem.
- Using it as a white box, the runtime can be improved to $O(10^k \cdot (n+m))$.
- With more careful use of modules, we can solve the interval completion and interval edge deletion problem as well.

- We have used the connection as a black box to devise a $10^k \cdot n^{O(1)}$ -time algorithm for the interval vertex deletion problem.
- Using it as a white box, the runtime can be improved to $O(10^k \cdot (n+m))$.
- With more careful use of modules, we can solve the interval completion and interval edge deletion problem as well.

- We have used the connection as a black box to devise a $10^k \cdot n^{O(1)}$ -time algorithm for the interval vertex deletion problem.
- Using it as a white box, the runtime can be improved to $O(10^k \cdot (n+m))$.
- With more careful use of modules, we can solve the interval completion and interval edge deletion problem as well.

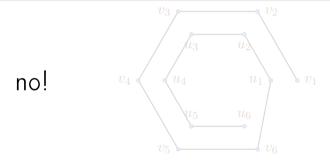
- We have used the connection as a black box to devise a $10^k \cdot n^{O(1)}$ -time algorithm for the interval vertex deletion problem.
- Using it as a white box, the runtime can be improved to $O(10^k \cdot (n+m))$.
- With more careful use of modules, we can solve the interval completion and interval edge deletion problem as well.

- We have used the connection as a black box to devise a $10^k \cdot n^{O(1)}$ -time algorithm for the interval vertex deletion problem.
- Using it as a white box, the runtime can be improved to $O(10^k \cdot (n+m))$.
- With more careful use of modules, we can solve the interval completion and interval edge deletion problem as well.

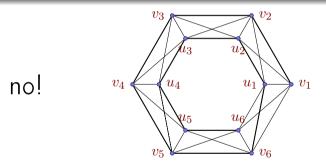
Conjecture



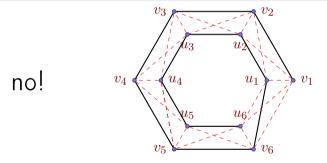
Conjecture



Conjecture



Conjecture



Definition

$$\overrightarrow{E}(\alpha) = \{vu : \alpha \in A_v, \ \alpha \not\in A_u, v \to u\},\$$

where $v \to u$ means that arc A_v intersects arc A_u from the left.

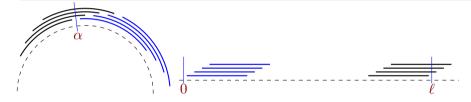
A trivial corollary

For any point α , the subgraph $G - \overrightarrow{E}(\alpha)$ is a unit interval graph.

Definition

$$\overrightarrow{E}(\alpha) = \{vu : \alpha \in A_v, \ \alpha \not\in A_u, v \to u\},\$$

where $v \to u$ means that arc A_v intersects arc A_u from the left.



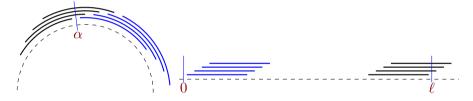
A trivial corollary

For any point α , the subgraph $G - \overrightarrow{E}(\alpha)$ is a unit interval graph.

Definition

$$\overrightarrow{E}(\alpha) = \{vu : \alpha \in A_v, \ \alpha \notin A_u, v \to u\},\$$

where $v \to u$ means that arc A_v intersects arc A_u from the left.



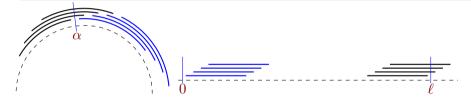
A trivial corollary

For any point α , the subgraph $G - \overrightarrow{E}(\alpha)$ is a unit interval graph.

Definition

$$\overrightarrow{E}(\alpha) = \{vu : \alpha \in A_v, \ \alpha \notin A_u, v \to u\},\$$

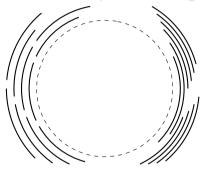
where $v \to u$ means that arc A_v intersects arc A_u from the left.



A nontrivial corollary

Any minimum solution is $\overrightarrow{E}(\alpha)$ for some point α .

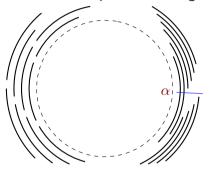
- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.



- $\ensuremath{\bullet}$ it suffices to try 2n different points (n actually)
- ullet finding an arbitrary point ho and calculate E(
 ho)
- scan clockwise, until an endpoint met
- ullet if it is a clockwise endpoint, then $\overrightarrow{E}(
 ho') = \overrightarrow{E}(lpha)$
- ullet otherwise, the difference between $E(\rho)$ and $E(\alpha)$

Theorem

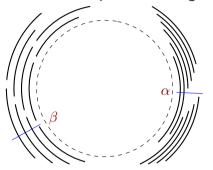
- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.



• it suffices to try 2n different points (n actually).
• finding an arbitrary point ρ and calculate $\overrightarrow{E}(\rho)$.
• scan clockwise, until an endpoint met;
• if it is a clockwise endpoint, then $\overrightarrow{E}(\rho') = \overrightarrow{E}(\alpha)$ • otherwise, the difference between $\overrightarrow{E}(\rho)$ and $\overrightarrow{E}(\alpha)$

Theorem

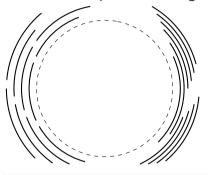
- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.



• it suffices to try 2n different points (n actually). • finding an arbitrary point ρ and calculate $\overrightarrow{E}(\rho)$. • scan clockwise, until an endpoint met; • if it is a clockwise endpoint, then $\overrightarrow{E}(\rho') = \overrightarrow{E}(\alpha)$

Theorem

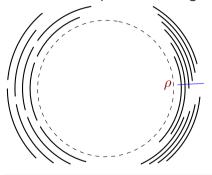
- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.



- it suffices to try 2n different points (n actually).
- finding an arbitrary point ρ and calculate $\overrightarrow{E}(\rho)$.
- scan clockwise, until an endpoint met;
- if it is a clockwise endpoint, then $\overrightarrow{E}(\rho') = \overrightarrow{E}(\alpha)$.
- otherwise, the difference between $\overrightarrow{E}(\rho)$ and $\overrightarrow{E}(\alpha)$ is the set of edges incident to v.

Theorem

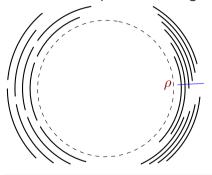
- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.



- it suffices to try 2n different points (n actually).
- finding an arbitrary point ρ and calculate $\overrightarrow{E}(\rho)$.
- scan clockwise, until an endpoint met;
- if it is a clockwise endpoint, then $\overrightarrow{E}(\rho') = \overrightarrow{E}(\alpha)$.
- otherwise, the difference between $\overrightarrow{E}(\rho)$ and $\overrightarrow{E}(\alpha)$ is the set of edges incident to v.

Theorem

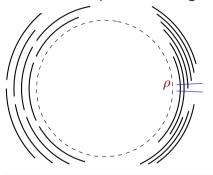
- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.



- it suffices to try 2n different points (n actually).
- finding an arbitrary point ρ and calculate $\overrightarrow{E}(\rho)$.
- scan clockwise, until an endpoint met;
- if it is a clockwise endpoint, then $\overrightarrow{E}(\rho') = \overrightarrow{E}(\alpha)$.
- otherwise, the difference between $\overrightarrow{E}(\rho)$ and $\overrightarrow{E}(\alpha)$ is the set of edges incident to v.

Theorem

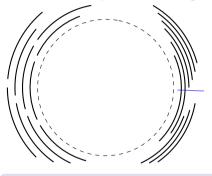
- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.



- it suffices to try 2n different points (n actually).
- finding an arbitrary point ρ and calculate $\overrightarrow{E}(\rho)$.
- scan clockwise, until an endpoint met;
- if it is a clockwise endpoint, then $\overrightarrow{E}(\rho') = \overrightarrow{E}(\alpha)$.
- otherwise, the difference between $\overrightarrow{E}(\rho)$ and $\overrightarrow{E}(\alpha)$ is the set of edges incident to v.

Theorem

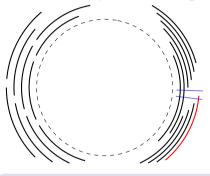
- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.



- it suffices to try 2n different points (n actually).
- finding an arbitrary point ρ and calculate $\overrightarrow{E}(\rho)$.
- scan clockwise, until an endpoint met;
- if it is a clockwise endpoint, then $\overrightarrow{E}(\rho') = \overrightarrow{E}(\alpha)$.
- otherwise, the difference between $\overrightarrow{E}(\rho)$ and $\overrightarrow{E}(\alpha)$ is the set of edges incident to v.

Theorem

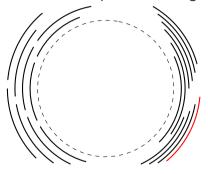
- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.



- it suffices to try 2n different points (n actually).
- finding an arbitrary point ρ and calculate $\overrightarrow{E}(\rho)$.
- scan clockwise, until an endpoint met;
- if it is a clockwise endpoint, then $\overrightarrow{E}(\rho') = \overrightarrow{E}(\alpha)$.
- otherwise, the difference between $\overrightarrow{E}(\rho)$ and $\overrightarrow{E}(\alpha)$ is the set of edges incident to v.

Theorem

- Both deletion problems reduce to find a weakest point.
- A weakest point w.r.t. edges is not necessarily a weakest point w.r.t. vertices.



- it suffices to try 2n different points (n actually).
- finding an arbitrary point ρ and calculate $\overrightarrow{E}(\rho)$.
- scan clockwise, until an endpoint met;
- if it is a clockwise endpoint, then $\overrightarrow{E}(\rho') = \overrightarrow{E}(\alpha)$.
- otherwise, the difference between $\overrightarrow{E}(\rho)$ and $\overrightarrow{E}(\alpha)$ is the set of edges incident to v.

Theorem

